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Abstract

In this paper, analysis of the L-integral in plane elasticity is present. An infinite plate with any number of inclusions
and cracks and with any remote tractions is assumed in analysis. Arbitrary forces are applied on the cracks, inclusions
or at a point of the infinite medium. To study the problem, the concept of the derivative stress field is introduced, which
is derived from a physical stress field. The mutual work difference integral (MWDI) is also introduced, which is defined
as a difference of mutual works done by each other from the physical stress field and the derivative field. It is proved
that the L(CR) (L-integral on a large circle) is equal to a particular MWDI. General expression for the L(CR) is ob-
tained. For a given stress field, the variation of the L(CR) is studied when the coordinates have a translation or rotation.
It is found that the L(CR) is an invariant with respect to the rotation of coordinates, and it has a variation when the
coordinates have a translation.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Knowles and Sternberg (1972) established a total four conservation laws, or path independent integrals
in two-dimensional deformation field. These integrals are J;-, J,-, L- and M-integral. Budiansky and Rice
(1973) have interpreted J,-, J»-, L- and M-integral as being the energy release rate when a cavity is trans-
lated, is rotated, and is expanded uniformly. These integrals have a general property that the values of the
mentioned integrals along a closed path do not depend on the path adopted, provided there is no singu-
larity between two integration paths. Naturally, if the closed path encloses some singularity or cavity, these
integrals must not vanish. At the vicinity of the crack tip, the Ji-integral (i = 1, 2) has some relation with the
stress intensity factors. Also, for the notch case the Ji-integral is an averaged measure of the strain at the
notch tip (Rice, 1968).
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Investigation of these integrals in the crack problems received particular interest. In some particular
cases, some path independent integrals can be evaluated in a closed form (Rice, 1968; Fruend, 1978;
Cherepanov, 1979; Kanninen and Popelar, 1985). For the M-integral, some studies were carried out (Chen,
1986; Suo, 2000; Chen, 2001). For a single crack in an infinite plate with the remote loading ¢2°, o)’ and oy
the L-integral was evaluated (Herrmann and Herrmann, 1981).

Recently, the M-integral for two-dimensional solids with interacting microcracks is studied (Chen, 2001).
The study is limited to some simple cases where the infinite plate with traction free crack is applied by
remote stresses. Clearly, in some complicated cases people were unaware of behaviors of the path inde-
pendent integrals. For example, in the case that: (a) the infinite plate is subject to the remote tractions, and
(b) it contains cracks, cavities and rigid inclusions with some loading on them, the L-integral on a large
circle needs to be investigated.

In this paper, general properties of the L-integral on a large circle are analyzed. It is assumed that an
infinite plate contains any number of inclusions and cracks. Arbitrary forces are applied on the cracks,
inclusions or at a point of the medium. The applied remote stresses are denoted by ¢7°, ¢;° and ¢7) (Fig. 1).
To study the problem, the mutual work difference integral (MWDI) is introduced, which is defined by the
difference of works done by each other from two stress fields on a large circle (Bueckner, 1973; Chen, 1985;
Chen and Lee, 2002). The concept of the derivative stress field is introduced. The derivative stress field is a
real elasticity solution, which is derived after some manipulation for the physical stress field. It is found that
the L-integral on a large circle is equal to an MWDI from the physical stress field and a derivative stress
field. Finally, the L-integral on a large circle depends on the following factors: (a) the remote tractions, (b)
the resultant forces applied on the defects, (c) the rigid translation term in the complex potentials. The
relation between the L-integral and stress intensity factors is also addressed.

Fig. 1. An infinite plate containing cracks, holes and inclusions.
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2. Evaluation of a mutual work difference integral (MWDI) for two physical stress fields

The following analysis depends on the complex variable function method in plane elasticity (Muskhe-
lishvili, 1953). In the method, the stresses (o,,0,,0,,), the resultant forces (X,Y) and the displacements
(u,v) are expressed in terms of two complex potentials ¢(z) and ¥(z) such that

o, +0d,=4Re¢'(2)

6, — 0, + 2ia,, = 202" (2) + /()] (1)
f=—Y+iX = $() +20 ) + 9C) 2)
26(u+iv) = k() — 29 C) — ¥ 2) (3)

where G is the shear modulus of elasticity, x = (3 — v)/(1 + v) is for the plane stress problem, k = 3 — 4v is
for the plane strain problem, and v is the Poisson ratio.

In this paper, stress analysis for an infinite plate containing many cracks, inclusions and holes is con-
sidered (Fig. 1). The remote stresses are denoted by 67, 3¢ and 7). Some forces may be applied on the
cracks, inclusions and holes.

The physical stress field is defined such that:

(a) In the field, the complex potentials ¢(z) and (z) can be expressed in the form

— () = Yoo
qb(d)(z) =¢(z) =Aiz+ Arlogz +ap + 2 = @
Vi (2) =¥(z) =Biz+ Bylogz+ b +§C & )

(o) - = D 2 10g 0 2 *

where 4y, ay, By, by and a;, b, (k=1,2,...) are some constants. The mentioned stress field is named the
o-field hereafter.
(b) In Egs. (4) and (5), there has a relation between 4, and B,,

Bz = —KZZ (6)

It is well known that Eq. (6) is a necessary condition for the single-valuedness of displacements
(Muskhelishvili, 1953).

In addition, we have (Muskhelishvili, 1953)

or + oy F. +iF,
A=l A= 7
: 4 0 T T 2n(k+ 1) @
oy —or - K(E —iF)
B =2 — 4ic®, By=—kdy=—— "2 8
! I A = P ®)

In Egs. (7) and (8), 677, 0)° and o7) are the remote stresses, and F, and F, are the resultant forces applied on
the finite region of infinite plate. In Eqs. (4) and (5), the coefficients a; and b; (k=1,2,...) will be de-
termined from a concrete solution. Meantime, ay and b, represent a rigid motion and have no relation with
the stress and strain. In the following, it will be found that the two values (@y and by) are involved in the

MWDI for two physical stress fields.
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Secondly, the another physical stress field with the name of fS-field is introduced, which is defined by

B o0 ek
b (2) = Exz+ Eylogz + e + ;:1 = 9)
Yp(2) = Fz+ Blogz+ fu + EOO oL (10)
() - Zk

As before, Ey, e, Fi, fo and e, fi (k=1,2,...) are arbitrary constants, and E, and F, satisfy the following
condition:

F&Z—KEZ (11)

From the mentioned o-field and fS-field, an MWDI for two physical stress fields is defined as (Bueckner,
1973; Chen, 1985; Chen and Lee, 2002)

1
D(CR) = 5 %CR) (Uia) Tij(p) — Ui(p)Tij(o) )11 ds (12)

where “CR” is a large circle with a radius “R” (Fig. 1), u) (u;p)) are the displacements, ;) (0;(s)) are the
stresses, for the o-field (S-field), respectively, n; denotes the direction cosine.
In the analysis, the following notations are used:

Uw) = @) + 10y, Uy = ug) + 1o

. . . (13)
Joy = Yo+ X (08 —ifin = X +1¥y)
Jy ==Y +1Xyp  (or —ifiy =X +1i¥p) (14)
Using the introduced notations, the first term in Eq. (12) can be rewritten in the form
i 0551 A5 = (o) dX () + 1) d¥(p) = Re[(u(y) — i) d(X(p) +1¥())] = Re[(=1)(U ) dfip))]
= Im[U ) dfip)] (15)
Similar derivation is done for the second term in Eq. (12). Finally, Eq. (12) can be written as
1 — _
D(CR) = Im f (Ut dfip) — Ui dfia] (16)
2 Jiew)
Clearly, on the large circle CR with a radius “R” the following properties hold (Fig. 1):
R2 2
z=—, zZ=R, d=-=dz (for z on the large circle CR) (17)
z z

From Egs. (4), (5), (9) and (10) we can get the following expressions:

2GU ) = 2G(u(y) — 1)) = K,y (2) — 2db(,) (2) — Y (2)
_ R? — _ ./ z\k R? A, >~ kay
=K A1?+2A210gR+ao+Zak<ﬁ)]7{A1+? F -

k=1
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dfip = d[¢(ﬁ)(z) +Z¢2ﬁ)(z) + W(ﬁ)(z)} = {

o0

+ E1+2E2 Z (k+2)e (%)Hl
k=

(19)

In addition, similar expressions can be achieved for 2GU ) and df{,. After taking the following steps:

(a) Substituting Eqgs. (18) and (19) and relevant expressions for 2GU ) and df(, into Eq. (16).
(b) Using the residue theory in the complex variable function.

The final result is obtained as follows:

1 1 — —
D(CR) =3 ]{ (i) Oiip) = i) Oy )y ds = 5Im (Ut dfi) — U dfi]
(CR) (CR)
n(k + 1
= g1{6[141](‘1 +A2f0 — Cl()sz — alFl —|—Ble1 + Bzeo — b0E2 — b]El] (20)

2G

It should be noted that a term — (x4, + B,) logz exists in the process of deriving the term 2GU ). Because
of Eq. (6), this term becomes vanishing. It is easy to see that if Eqs. (6) and (11) do not satisfy, the integral
D(CR) will be divergent.

The result shown by Eq. (20) plays an important role in the present study. It will be shown later the J;-,
J>-, L- and M- integral on a large circle can be reduced to some particular MWDI (Chen, 1985; Chen and
Lee, 2002).

3. The derivative stress field in plane elasticity

In the present study, the actual stress field in an infinite medium under the action of remote loads and
forces applied on finite portion is called the original stress field, or in turn is called the o-field (Fig. 1). In
order to simplify the written form, the subscript ““(«)” is generally omitted, for example, ¢, (2), Y, (2), ti(a)»
Oij(a)> Ux)» Ox(») aT€ Tewritten as ¢(z), Y(z), u;, 6y, U, 0Ox.

The derivative stress field is defined such that:

(a) The derivative stress field is generally derived from the original field (the a-field).
(b) The relevant complex potentials in the derivative field should satisfy the single-valuedness condition of

displacements, or the equality shown by Egs. (6) or (11).

The following are two examples. In the first example, the complex potentials for f-field are defined as

b (2) = c19(2) 201{A12+A210g2+610+2?} (21)
k=1

lp(ﬂ)(z) = Czl,b(z) = 02{312 + Bz IOgZ + b() + Z % } (Cl 7& Cz) (22)
k=1

where ¢; and ¢, are two real constants, and ¢; # ¢,. Comparing Egs. (9) and (10) with Egs. (21) and (22), it
follows
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Ey =cids, F=ab (23)

In this case, since B, = —kA,, it is easy to verify F> # —«kE, because of ¢; # c,. Thus, the defined p-field does
not satisfy the single-valuedness condition of displacements, and it is not a derivative field.
In the second example, the complex potentials for S-field are defined as

. . - a
b (2) =ip(z) =i|diz+ Arlogz +ay + ; Zk] (24)
. . x_p
Vip(2) = —ip(z) = —i|Biz+ Bylogz + by + Y Z—,’j] (25)
k=1

Comparing Egs. (9) and (10) with Eqgs. (24) and (25), it follows
Ey=idy, F=—iB, (26)

Since B, = —k4,, it is easy to see that the condition F, = —«E, is also satisfied. Thus, the defined p-field
satisfy the single-valuedness condition of displacements, and it is a derivative field.

4. Analysis of the L-integral in plane elasticity

In the literature, the L-integral is defined by

(x)
Ly = [ e+ T~ T ds (27)
(x0.30),(4)
where “A” denotes an arbitrary path leading from the point (x¢, ;) to the point (x,y) (Fig. 1), es; is the
alternating tensor with the definition (esn =1,e3; = —1,e311 = ey, =0), u; is the displacement,
uy; = Ouy/0x;, n; is the direction cosine, 7, = 6.1, denotes the force component, and W (= gy¢;,/2) the
strain energy function. Clearly, the integral L(A) is path independent.
The integral may be rewritten in the form

()
L(A) = / [e3;; Waejn; — ex;(—Okitt; + Ug iX;) Opnty] ds (28)
(ox

0:0),(4)

where Kronecker deltas d;; is defined as ¢;; = 1 for i = j, §;; = 0 for i # j. In addition, we can define the
integral

L(CH) = f [e3ij‘ ijl/ll — e3ij(75k[uj + Mk7[XJ)kan,n] ds (29)
CH

where “CH” is a closed integration path indicated in Fig. 1. Eq. (29) reveals that the terms es;;(—du; +
u;x;) (k=1,2) may be a displacement of a real elastic solution, which is named f-field here. Therefore, we
can assume

Ou Ou ov ov

It is easy to verify that the displacements u; and v satisfy the following governing equation for dis-
placements:
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Qugp Fug | vy ) Fup | Qugp
1 —1 220 1 1 2 _
(e +1) Ox2 + 1) 0)? + Ox0y 0. (r+1) 0)? + 1) 0x2 * Ox0y

Alternatively speaking, the displacements ug) and v is an elasticity solution. Meantime, the relevant stress
components can be expressed as

0 (31)

0o, 0o, 0o, 0o, 0o,  Oo,

O-x(ﬂ) = —20'xy—|—y a_x — X ay 5 O-y(/i) :20'xy+ya xa—y, O-xy([f) :o’x—a),—l—xa—y ay (32)
On the other hand, we can prove that the relevant complex potentials for the f-field are as follows:

by (2) = —i(z¢'(z) — b(2)) (33)

Vip(2) = —i(zy/(2) + ¥ (2) (34)

In addition, we can prove that, if the complex potentials ¢ 4 (z) and ¥ 4 (z) are expanded in the form of Eqs.
(9) and (10), the condition (11) is satisfied. Therefore, the mentioned f-stress field is a derivative stress field.
Alternatively, from Eq. (29), L(CH) may be written in the form

L(CH) = % [e3iijj'ni — u,-(/;)O',-jnj] dS (35)
CH
In addition, we can introduce an MWDI as follows:
1
O(CH) = 3 j{ {uioi5p) — iy o tn;ds (36)
CH
A relation between L(CH) and Q(CH) has been found, and it reads
L(CH) = Q(CH) (37)

In fact, from Egs. (35) and (36) we can see that in order to prove Eq. (37) it is necessary to prove the
following equality:

2]{ €3 Wi;n; ds :j{ {uioijp) + uip oy tn;ds (38)
CH CH
The equality (38) can be proved by considering the following points (Chen, 1985; Chen and Lee, 2002):

(a) The strain energy function can be expressed in an explicit form

= O'I»ju,-‘j/Z (39)
(b) Since the equilibrium condition is satisfied, the following substitutions are used:

0oy do,,  Ooy 0o,

= — - = — — 4

Ox oy 7 Ox dy (40)

(c) In the derivation it is assumed that the single-valuedness condition of displacements is satisfied.
Since the closed path “CR” is a particular type “CH”, from Eq. (37) it follows (Fig. 1)

L(CR) = Q(CR) (41)
where

L(CR) = {e3ijVijn,- — u,(ﬁ)o‘,jnj}ds (42)

CR
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1
QO(CR) = 3 jiR{“iai/(/f) — U0y }n;ds (43)

Note that the integral Q(CR) is exactly the same kind of D(CR), which was defined by Eq. (12).
Since the f-field is a derivative stress field, substituting Egs. (4) and (5) into Egs. (33) and (34) yields

qb(ﬁ)(z) = —i(Z(f),(Z) — d)(z)) = —i [(A]Z +A4; — i %) - <A12+A2 10gZ+ ap + i §>‘| (44)

k=1 k=1

|

= “

Vg (2) = —i(zy/(2) + Y(z)) = —i [(Blz+B2 — i k—i") + <Blz+ Bylogz + by + Z )] (45)

Comparing Egs. (44) and (45) with Egs. (9) and (10), it is found
El = 0, E2 = iAz, ey = —i(Az — a()), e = 1(2611) (46)

Fi = —-i(2By), F=—iB,, fo=—i(Ba+by), f1=0 (47)

The constants 4, 4>, ay,ay, ...By,B,, by, by, ... for the a-field were shown in Egs. (4), (5), (7) and (8). The
constants Ey, E», ey, ey, ... F, P, fo, f1, - . . for the p-field were shown in Egs. (46) and (47). Substituting the
mentioned constants into Eq. (20) yields

n(k+ 1)
G

Some particular features can be found from Eq. (48): (a) the L(CR) value does not depend on 4, and b,,
(b) for evaluating the L(CR), it is necessary to obtain the constants 45, ao,a; and By, B,, by.

For a given stress state of the infinite plate, consider how the L(CR)-integral changes from one system of
rectangular coordinates to another. Let (x,y) and (x,,y.) be the coordinates of the same point in the (xoy)
and (x.0.y,) systems and let

L(CR) = Q(CR) = Im[Azb() — a()Bz — 2a181] (48)

zo=z4zg (withz, =x, +1y, z=x+1y, zg = x4+ 1y) (49)

where z, represents a translation of the coordinate system (Fig. 2(a)).
The complex potentials in the new coordinates (x,,y,) take the form (Muskhelishvili, 1953)

b.(2) = bz —20), Yu(z) = (2 — 20) = Za¢'(z. — 24) (50)

Infinite plate 6 65 O, Infinite plate 65 G O

Qe

A Xd

@) (b) X

Fig. 2. Transformation of the coordinates: (a) translation of the coordinates, (b) rotation of the coordinates.
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The complex potentials in the (x.0.y.) coordinates can be expressed in the following form:

S Qe
¢*(Z*) = AI*Z* +A2* IOgZ* + ap. +
V.(z.) = Buz, + By, logz, + b +§:b’”
w\“x) — 1x4x 2% * 0%

= %

After substituting Eqgs. (4) and (5) into Eq. (50), it is easy to find the following results:

A =41, A=A, ap.=ay—Aizq, a1 =a —Ayzy

By, =By, By =By, by.=>by—Bizg—AZs, bi.=by — Brzg— A2z
In the (x.0.y.) coordinates, the L,(CR) can be expressed in the form
n(k+1)

G
Substituting Egs. (53) and (54) into Eq. (55) yields
L.(CR)=L(CR)+1L,
where
L, = yJ1(CR) —x4J>2(CR)  (zg = x4+ 1ya)

L*(CR) - Im[AZ*b()* - aO*BZ* - 2(11*31*}

w(k+ 1)

Ou;
J] (CR) = % |:W}’ll — a—uaij”j:| ds = Re[AlAz +Ale +A2Bl]
CR X

n(x+ 1)

Ou
Jz(CR) = % |:Wl’l2 - auO',-jI’lj:| ds = Im[AlAz —Ale —AzBl}
CR y

3597

(59)

In Egs. (57)—(59), the J; and J, are well known in the literature (Chen and Lee, 2002). Eq. (55) reveals that

the L(CR) is not an invariant with respect to the translation of coordinates.

Secondly, consider how the L-integral changes under a rotational transformation of the rectangular
coordinates (Fig. 2(b)). Let (x,y) and (x.,y.) be the coordinates of the same point in the (xoy) and (x,0y.)

systems and let
z, =zexp(i) (with z, = x, +1y,, z=x+1y)

where the angle a represents a rotation of the coordinate system (Fig. 2(b)).

The complex potentials in the new coordinates (x.,y,) take the form (Muskhelishvili, 1953)

¢.(2.) = exp(iz) plexp(—in)z.], V. (z.) = exp(—ia)ylexp(—ix)z.]

Similarly, the complex potentials can be expressed in the following forms:

00 ay.
(]5*(2*) - AI*Z* +A2* IOgZ* + (24 + Z ];c
k=1 *
00 bk*
l,b*(Z*) = BI*Z* + BZ* lOgZ* + bO* + Z k
k=1 *

After substituting Egs. (4) and (5) into Eq. (61), it is easy to find the following results:
Al* = A], Az* = exp(ioc)Az, Apsx = eXp(lOC)[—lotAz + a()], Al = exp(2io<)a1

(60)
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By, = exp(—2ia)B;, By =exp(—in)By, bo. = exp(—ia)[—iaBy + bo], b1 = b (65)
Similarly, in the (x.0.y.) coordinates the L,(CR) can be expressed in the form
1
L* (CR) = LC_;)Im[ANbO* — ao*Bz* — 2a1*Bl*] (66)
Substituting Egs. (64) and (65) into Eq. (66) yields
L.(CR) = L(CR), (67)

Eq. (67) reveals that the L(CR) is an invariant with respect to the rotation of coordinates.

Three particular cases for evaluating the L-integral are introduced below.

(1) In the first case, the loading condition is shown by Fig. 3(a) where the concentrated forces P, and P,
are applied on the crack face, the available solution is as follows (Chen, 1995):

¢'(z) P+iP[r—1 1 1

'(2) 2n | k+1 X(z):Fz—s (68)
V' (z) = @'(2) —2¢"(2) — ¢'(2) (69)
where
X(z) = vz* —a® (taking the branch Lim, .. X(z)/z =1) (70)
After comparing Egs. (68) and (69) with Egs. (4) and (5), we will find
Px+iPy (Px-‘rlpy)s
= = - = 1
4, =0, 4, Tt 1) aj o (71)
k(P — iP,) (2iP)s
= = W op = 72
Bl 07 B2 T[(K+ 1) ) 1 21_': ( )

Using Egs. (48), (71) and (72) yields
1 - .
L(CR) = — =Im((kay — bo) (P — iP))] (73)
It is known that for a given stress state, two constants ag, by in Egs. (4) and (5) cannot be determined from

the force boundary condition. That is to say in the present case the L(CR) value may be influenced by the
rigid motion of body, which is determined by @, and b,.

x Oy O
¥ '
PX
Ole=> b
S « |:(—| > >
—— 2a —» . 2a — X \Gl_y

@ (b) ©

Fig. 3. Three loading cases: (a) a crack with forces on the crack face, (b) a crack with remote loading, (c) an elliptic hole in an infinite
plate.
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(2) In the second case, the loading condition is shown by Fig. 3(b) where the remote tractions o7, ¢}° and
o,y are applied, the available solution is as follows:

¥ =o o) -3l i) (1- 5 ) (74)
V(z) = %(aj" — 0% 4 2i07) — 07 (1 —ﬁ) +%(a;° - ia;;)XZ(ZZ) (75)

After comparing Eqs. (74) and (75) with Eqgs. (4) and (5), we will find

00 00
o +o) 1

A = — A, =0, a = fz(a;o - iaj:;)az (76)
1 0 00 ;00 1 00 2
B, = E(Gy -0 +2icy), By=0, b= —50,4 (77)

Using Eqgs. (48), (76) and (77) yields (Herrmann and Herrmann, 1981)

n(k+1) o, o ~
L(CR) = (TG)O')W(O'X + Uy )az (78)
or
K+1
L(CR) = e K (K + oXv/na)a (79)

where K| and K, are the stress intensity factor at the crack tip.

(3) In the third example, it is assumed that an infinite plate containing an elliptical notch is applied by
the remote tractions ¢;°, ¢)° and o) and that the notch surface is traction free (Fig. 3(c)). In the case, the
previously introduced complex potentials ¢(z) and (z) are rewritten as ¢,(z) and y,(z). Meantime, the
following mapping function is introduced:

S

sl =h(s+7) ©O<me) (50)

which maps the region outside the unit circle (in ¢-plane) into a region outside the elliptical notch (in
z-plane). Clearly, there are the following relations:

a=Ry(l4+m), b=Ry(l1—-m), Ry=(a+b)/2, m=(a—>b)/(a+D) (81)

[T 2]

where “a” and “b” are the major and minor axes of the elliptical notch, respectively (Fig. 3(c)). In ¢-plane
two complex potentials are defined

d)(g) = d)l(z) =o()? lﬁ(g) = lﬂl(Z) z=0(c) (82)

The traction free condition of the elliptical contour leads to

-

E; +¥(@ =0 (on unit circle |¢] = 1) )

After some manipulation, the boundary value problem has the following solution (Muskhelishvili, 1953):

¢(c) + o(c)

¢(¢) = A1Roc — (mA, +§1)Roé (84)
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W(2) = BiRos — ARy~ — (1 + m?)A\Ro——— — (mA, + B))R me’ + 1 (85)
¢) = biftog 10g m logz—m maAy 1 Og(gz—m)
where
_Uf"-i-ajc _ojc—afo .
A1—f, Bl—f—ﬂaxy (86)
From Eq. (80), at the remote place we have
z mRo 1 RO
SNRiO_?’ 57 (87)
Substituting Eq. (87) into Egs. (84) and (85) yields
a
$1(2) = Sy = iz + Arlogz + o (88)
by
V1(2) = ¥(Q) oy = Biz + Brlogz +—+ - (89)
where
A2 = Bz = 0, a, = 7R§(2I11A1 +§1), b] = 7R(2)[2(1 +m2)A1 +mBl +ml_31] (90)
Substituting Egs. (86) and (90) into Eq. (48) yields
(K + 1 00 (00 00
L(CR) = %ng%(ax +0%) (91)

5. Conclusions

The derivative stress field plays an important role in the present study. It is found that, for the cases of
Ji-, J»-, L-, and M-integral, the relevant derivative stress fields can be found from this study and previous
papers (Chen, 1985; Chen and Lee, 2002). If the complex potentials are expressed in the form of Egs. (4)
and (5), the final results are as follows:

Ou; 1
J](CR) = % |:W7’l1 —a—L;O',‘jnj:| dS:MRC[AlAz—f—AIBZ +A2B1] (92)
CR
JQ(CR) = f |:WI12 - au[(f,-jnj:| ds = MIm[AlAz 7A132 714231] (93)
CR y
n(x+1)
L(CR) = [63,-jVVXjI’l,' — e3,~j(—5k,vuj + Mkinj)O'kmnm] dS = TIm[Azbo — Cl()Bz — 2{1131] (94)
CR
n(k+1)
M(CR) = (Wx,-ni — l/l,’)](xko'iji’lj) ds = TRC[-A]b] — a131 +A232] (95)
CR

Previously, researchers were unaware of the vanishing condition for the mentioned path independent
integrals. For the J;(CR)- and J,(CR)-integrals, two sufficient conditions for the vanishing value of the
integrals are as follows: (a) 4 = B, =0 (or 6 = 0" = a}; =0) or (b) 4, =B, =0 (or F, = F, =0).
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Meantime, for the L(CR)-integral, a sufficient condition for the vanishing value of the integral is as
follows: By = 0 (or o — oy + 2ia§;’ =0) and 4, = B, = 0 (or F, = F, = 0). Finally, for the M(CR)-inte-
gral, a sufficient condition for the vanishing value of the integral is as follows: (a) 4, =B, =0 (or
0 =0 =0, =0)and (b) 4, = B, = 0 (or £ = F, = 0). From the above-mentioned analysis we see that
the vanishing conditions for these integrals are quite different.

Obviously, it is straightforward to obtain the path independent integrals (J;(CR)-, J,(CR)-, L(CR)- and
M (CR)-integrals) from the general results shown by Egs. (92)—(95). However, it is not easy to get the
physical explanation for those integrals in more general case, particularly in the case of 4, # 0 and B, # 0,
i.e. there are some resultant forces applied on the finite portion of infinite plate.

These integrals can be evaluated for a simple crack with the conditions: (a) there is no resultant forces
applied on the crack, i.e. 4, = B, = 0, (b) the remote tractions are 77, 0, and ¢7). In this case, simply using
Egs. (7), (8), (76), (77) and (92)—(95) yields

Ji(CR) = % {Wnl — %aijnj] ds=0 (96)

CR @x
614,'

JH(CR) = % Wny ——oyn;|ds =0 (97)

CR oy
nk+1) o0 o 2

L(CR) = [ezii Wan; — e3;(—Opttj + g iX;) Opuityy] ds = TG;;(G;‘ + aj")a (98)
CR

M(CR) = ]{ (Wain; — i gxioyn;) ds = M[(o—%f + (6%))d? (99)
CR 4G Yy xy

Clearly, M(CR) can serve as a measure of severity at the crack tip. If the values of ¢}° and o5 are higher,
the crack tip is more dangerous. However, one cannot see the role of the component ¢2° in the expression of
M(CR). On the other hand, the L(CR) may be another measure of severity at the crack tip, in which all the
components 077, ¢,° and ¢ are involved. However, unlike the M (CR) case, one cannot judge whether the
L(CR) is definitely positive or negative.

It is known that the M(CR) is an additional strain energy stored in a cracked body. Therefore, it is
interesting to investigate the M(CR) variation with respect to a neighboring configuration of the crack
(Fig. 4).

In the first case, we assume that the crack length “2a” get an extension and becomes 2a(1 + o) (Fig. 4(b)).
In this case, the relevant M(CR) is denoted by

M) =" D (o2 1 (@30 4 0 (100
y
y y
AB
X X X
— o — o
2a I‘_2(1+oc)a | W 2
@ (b) ©

Fig. 4. A single crack with remote tractions ¢2°, ¢;° and o (a) the original case, (b) a crack with extension, (c) a crack with rotation.
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Clearly, from Eq. (100) we have
OM (o)
Ou

=2M(CR) (101)
=0
That is to say, the value of M(CR) represents the energy variation with respect to the crack extension.
In the second case, we assume that the crack get a rotation with a rotating angle “f” (Fig. 4(c)). In this
case, the relevant M(CR) is denoted by

m(p) ="V (02 4 (o3 (102
where
oy = 0y sin’ B+ 67 cos’ B — 207 sin fcos (103)
oy, = (=03 + 67°) sin fcos B+ o7 (cos” B — sin® B)
Clearly, from Eq. (102) we have
Gjlé[_éﬁ) Y = —2L(CR) (104)

That is to say, the value of L(CR) represents the energy variation with respect to the crack rotation. Similar
derivation can be found from Herrmann and Herrmann (1981).

Clearly, two equations (101) and (104) are similar. However, the former case shown by Fig. 4(b) can be
realized physically. For example, in the case of ¢° # 0 and ¢7) = 0, the crack may have extension in
x-direction. However, the case of crack rotation does not exist physically (Fig. 4(c)).
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