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Abstract

In this paper, analysis of the L-integral in plane elasticity is present. An infinite plate with any number of inclusions
and cracks and with any remote tractions is assumed in analysis. Arbitrary forces are applied on the cracks, inclusions

or at a point of the infinite medium. To study the problem, the concept of the derivative stress field is introduced, which

is derived from a physical stress field. The mutual work difference integral (MWDI) is also introduced, which is defined

as a difference of mutual works done by each other from the physical stress field and the derivative field. It is proved

that the LðCRÞ (L-integral on a large circle) is equal to a particular MWDI. General expression for the LðCRÞ is ob-
tained. For a given stress field, the variation of the LðCRÞ is studied when the coordinates have a translation or rotation.
It is found that the LðCRÞ is an invariant with respect to the rotation of coordinates, and it has a variation when the
coordinates have a translation.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Knowles and Sternberg (1972) established a total four conservation laws, or path independent integrals

in two-dimensional deformation field. These integrals are J1-, J2-, L- and M-integral. Budiansky and Rice
(1973) have interpreted J1-, J2-, L- and M-integral as being the energy release rate when a cavity is trans-
lated, is rotated, and is expanded uniformly. These integrals have a general property that the values of the

mentioned integrals along a closed path do not depend on the path adopted, provided there is no singu-
larity between two integration paths. Naturally, if the closed path encloses some singularity or cavity, these

integrals must not vanish. At the vicinity of the crack tip, the Ji-integral ði ¼ 1; 2Þ has some relation with the
stress intensity factors. Also, for the notch case the J1-integral is an averaged measure of the strain at the
notch tip (Rice, 1968).
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Investigation of these integrals in the crack problems received particular interest. In some particular

cases, some path independent integrals can be evaluated in a closed form (Rice, 1968; Fruend, 1978;

Cherepanov, 1979; Kanninen and Popelar, 1985). For the M-integral, some studies were carried out (Chen,
1986; Suo, 2000; Chen, 2001). For a single crack in an infinite plate with the remote loading r1

x , r
1
y and r1

xy ,
the L-integral was evaluated (Herrmann and Herrmann, 1981).
Recently, theM-integral for two-dimensional solids with interacting microcracks is studied (Chen, 2001).

The study is limited to some simple cases where the infinite plate with traction free crack is applied by

remote stresses. Clearly, in some complicated cases people were unaware of behaviors of the path inde-

pendent integrals. For example, in the case that: (a) the infinite plate is subject to the remote tractions, and

(b) it contains cracks, cavities and rigid inclusions with some loading on them, the L-integral on a large
circle needs to be investigated.

In this paper, general properties of the L-integral on a large circle are analyzed. It is assumed that an
infinite plate contains any number of inclusions and cracks. Arbitrary forces are applied on the cracks,

inclusions or at a point of the medium. The applied remote stresses are denoted by r1
x , r

1
y and r1

xy (Fig. 1).

To study the problem, the mutual work difference integral (MWDI) is introduced, which is defined by the

difference of works done by each other from two stress fields on a large circle (Bueckner, 1973; Chen, 1985;

Chen and Lee, 2002). The concept of the derivative stress field is introduced. The derivative stress field is a

real elasticity solution, which is derived after some manipulation for the physical stress field. It is found that

the L-integral on a large circle is equal to an MWDI from the physical stress field and a derivative stress
field. Finally, the L-integral on a large circle depends on the following factors: (a) the remote tractions, (b)
the resultant forces applied on the defects, (c) the rigid translation term in the complex potentials. The

relation between the L-integral and stress intensity factors is also addressed.
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Fig. 1. An infinite plate containing cracks, holes and inclusions.
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2. Evaluation of a mutual work difference integral (MWDI) for two physical stress fields

The following analysis depends on the complex variable function method in plane elasticity (Muskhe-

lishvili, 1953). In the method, the stresses ðrx; ry ; rxyÞ, the resultant forces ðX ; Y Þ and the displacements
ðu; vÞ are expressed in terms of two complex potentials /ðzÞ and wðzÞ such that

rx þ ry ¼ 4Re/0ðzÞ

ry � rx þ 2irxy ¼ 2½�zz/00ðzÞ þ w0ðzÞ	 ð1Þ

f ¼ �Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ ð2Þ

2Gðuþ ivÞ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ ð3Þ

where G is the shear modulus of elasticity, j ¼ ð3� mÞ=ð1þ mÞ is for the plane stress problem, j ¼ 3� 4m is
for the plane strain problem, and m is the Poisson ratio.
In this paper, stress analysis for an infinite plate containing many cracks, inclusions and holes is con-

sidered (Fig. 1). The remote stresses are denoted by r1
x , r

1
x and r1

xy . Some forces may be applied on the
cracks, inclusions and holes.

The physical stress field is defined such that:

(a) In the field, the complex potentials /ðzÞ and wðzÞ can be expressed in the form

/ðaÞðzÞ ¼ /ðzÞ ¼ A1zþ A2 log zþ a0 þ
X1
k¼1

ak
zk

ð4Þ

wðaÞðzÞ ¼ wðzÞ ¼ B1zþ B2 log zþ b0 þ
X1
k¼1

bk
zk

ð5Þ

where A1; a0;B1; b0 and ak; bk ðk ¼ 1; 2; . . .Þ are some constants. The mentioned stress field is named the
a-field hereafter.

(b) In Eqs. (4) and (5), there has a relation between A2 and B2,

B2 ¼ �jA2 ð6Þ

It is well known that Eq. (6) is a necessary condition for the single-valuedness of displacements

(Muskhelishvili, 1953).

In addition, we have (Muskhelishvili, 1953)

A1 ¼
r1
x þ r1

y

4
; A2 ¼ � Fx þ iFy

2pðj þ 1Þ ð7Þ

B1 ¼
r1
y � r1

x

2
þ ir1

xy ; B2 ¼ �jA2 ¼
jðFx � iFyÞ
2pðj þ 1Þ ð8Þ

In Eqs. (7) and (8), r1
x , r

1
y and r1

xy are the remote stresses, and Fx and Fy are the resultant forces applied on
the finite region of infinite plate. In Eqs. (4) and (5), the coefficients ak and bk ðk ¼ 1; 2; . . .Þ will be de-
termined from a concrete solution. Meantime, a0 and b0 represent a rigid motion and have no relation with
the stress and strain. In the following, it will be found that the two values (a0 and b0) are involved in the
MWDI for two physical stress fields.
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Secondly, the another physical stress field with the name of b-field is introduced, which is defined by

/ðbÞðzÞ ¼ E1zþ E2 log zþ e0 þ
X1
k¼1

ek
zk

ð9Þ

wðbÞðzÞ ¼ F1zþ F2 log zþ f0 þ
X1
k¼1

fk
zk

ð10Þ

As before, E1; e0; F1; f0 and ek; fk ðk ¼ 1; 2; . . .Þ are arbitrary constants, and E2 and F2 satisfy the following
condition:

F2 ¼ �jE2 ð11Þ
From the mentioned a-field and b-field, an MWDI for two physical stress fields is defined as (Bueckner,

1973; Chen, 1985; Chen and Lee, 2002)

DðCRÞ ¼ 1
2

I
ðCRÞ

ðuiðaÞrijðbÞ � uiðbÞrijðaÞÞnj ds ð12Þ

where ‘‘CR’’ is a large circle with a radius ‘‘R’’ (Fig. 1), uiðaÞ (uiðbÞ) are the displacements, rijðaÞ (rijðbÞ) are the
stresses, for the a-field (b-field), respectively, nj denotes the direction cosine.
In the analysis, the following notations are used:

UðaÞ ¼ uðaÞ þ ivðaÞ; UðbÞ ¼ uðbÞ þ ivðbÞ
fðaÞ ¼ �YðaÞ þ iXðaÞ ðor � ifðaÞ ¼ XðaÞ þ iYðaÞÞ

ð13Þ

fðbÞ ¼ �YðbÞ þ iXðbÞ ðor � ifðbÞ ¼ XðbÞ þ iYðbÞÞ ð14Þ

Using the introduced notations, the first term in Eq. (12) can be rewritten in the form

uiðaÞrijðbÞnj ds ¼ uðaÞ dXðbÞ þ vðaÞ dYðbÞ ¼ Re½ðuðaÞ � ivðaÞÞdðXðbÞ þ iYðbÞÞ	 ¼ Re½ð�iÞðU ðaÞ dfðbÞÞ	
¼ Im½U ðaÞ dfðbÞ	 ð15Þ

Similar derivation is done for the second term in Eq. (12). Finally, Eq. (12) can be written as

DðCRÞ ¼ 1
2
Im

I
ðCRÞ

½U ðaÞ dfðbÞ � U ðbÞ dfðaÞ	 ð16Þ

Clearly, on the large circle CR with a radius ‘‘R’’ the following properties hold (Fig. 1):

�zz ¼ R2

z
; �zzz ¼ R2; d�zz ¼ �R

2

z2
dz ðfor z on the large circle CRÞ ð17Þ

From Eqs. (4), (5), (9) and (10) we can get the following expressions:

2GU ðaÞ ¼ 2GðuðaÞ � ivðaÞÞ ¼ j/ðaÞðzÞ � �zz/0
ðaÞðzÞ � wðaÞðzÞ

¼ j A1
R2

z

"
þ 2A2 logRþ �aa0 þ

X1
k¼1

�aak
z
R2

� �k#
� R

2

z
A1

"
þ A2
z
�
X1
k¼1

kak
zkþ1

#
� B1z

"
þ b0 þ

X1
k¼1

bk
zk

#

ð18Þ
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dfðbÞ ¼ d½/ðbÞðzÞ þ z/0
ðbÞðzÞ þ wðbÞðzÞ	 ¼ E1

"(
þ E2

1

z
�
X1
k¼1

kek
zkþ1

#

þ E1

"
þ 2E2

z
R2

�
X1
k¼1

kðk þ 2Þ�eek
z
R2

� �kþ1#
þ
"
� F 1

R2

z2
� F 2

1

z
þ
X1
k¼1

k�ffk
R2

z
R2

� �k�1#)
dz

ð19Þ
In addition, similar expressions can be achieved for 2GU ðbÞ and dfðaÞ. After taking the following steps:

(a) Substituting Eqs. (18) and (19) and relevant expressions for 2GU ðbÞ and dfðaÞ into Eq. (16).
(b) Using the residue theory in the complex variable function.

The final result is obtained as follows:

DðCRÞ ¼ 1
2

I
ðCRÞ

ðuiðaÞrijðbÞ � uiðbÞrijðaÞÞnj ds ¼
1

2
Im

I
ðCRÞ

½U ðaÞ dfðbÞ � U ðbÞ dfðaÞ	

¼ pðj þ 1Þ
2G

Re½A1f1 þ A2f0 � a0F2 � a1F1 þ B1e1 þ B2e0 � b0E2 � b1E1	 ð20Þ

It should be noted that a term �ðjA2 þ B2Þ log z exists in the process of deriving the term 2GU ðaÞ. Because
of Eq. (6), this term becomes vanishing. It is easy to see that if Eqs. (6) and (11) do not satisfy, the integral

DðCRÞ will be divergent.
The result shown by Eq. (20) plays an important role in the present study. It will be shown later the J1-,

J2- , L- and M- integral on a large circle can be reduced to some particular MWDI (Chen, 1985; Chen and
Lee, 2002).

3. The derivative stress field in plane elasticity

In the present study, the actual stress field in an infinite medium under the action of remote loads and

forces applied on finite portion is called the original stress field, or in turn is called the a-field (Fig. 1). In
order to simplify the written form, the subscript ‘‘ðaÞ’’ is generally omitted, for example, /ðaÞðzÞ, wðaÞðzÞ, uiðaÞ,
rijðaÞ, uðaÞ, rxðaÞ are rewritten as /ðzÞ, wðzÞ, ui, rij, u, rx.
The derivative stress field is defined such that:

(a) The derivative stress field is generally derived from the original field (the a-field).
(b) The relevant complex potentials in the derivative field should satisfy the single-valuedness condition of

displacements, or the equality shown by Eqs. (6) or (11).

The following are two examples. In the first example, the complex potentials for b-field are defined as

/ðbÞðzÞ ¼ c1/ðzÞ ¼ c1 A1z

(
þ A2 log zþ a0 þ

X1
k¼1

ak
zk

)
ð21Þ

wðbÞðzÞ ¼ c2wðzÞ ¼ c2 B1z

(
þ B2 log zþ b0 þ

X1
k¼1

bk
zk

)
ðc1 6¼ c2Þ ð22Þ

where c1 and c2 are two real constants, and c1 6¼ c2. Comparing Eqs. (9) and (10) with Eqs. (21) and (22), it
follows
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E2 ¼ c1A2; F2 ¼ c2B2 ð23Þ

In this case, since B2 ¼ �jA2, it is easy to verify F2 6¼ �jE2 because of c1 6¼ c2. Thus, the defined b-field does
not satisfy the single-valuedness condition of displacements, and it is not a derivative field.

In the second example, the complex potentials for b-field are defined as

/ðbÞðzÞ ¼ i/ðzÞ ¼ i A1z
"

þ A2 log zþ a0 þ
X1
k¼1

ak
zk

#
ð24Þ

wðbÞðzÞ ¼ �iwðzÞ ¼ �i B1z
"

þ B2 log zþ b0 þ
X1
k¼1

bk
zk

#
ð25Þ

Comparing Eqs. (9) and (10) with Eqs. (24) and (25), it follows

E2 ¼ iA2; F2 ¼ �iB2 ð26Þ

Since B2 ¼ �jA2, it is easy to see that the condition F2 ¼ �jE2 is also satisfied. Thus, the defined b-field
satisfy the single-valuedness condition of displacements, and it is a derivative field.

4. Analysis of the L-integral in plane elasticity

In the literature, the L-integral is defined by

LðKÞ ¼
Z ðx;yÞ

ðx0;y0Þ;ðKÞ
e3ij½Wxjni þ Tiuj � Tkuk;ixj	ds ð27Þ

where ‘‘K’’ denotes an arbitrary path leading from the point ðx0; y0Þ to the point ðx; yÞ (Fig. 1), e3ij is the
alternating tensor with the definition (e312 ¼ 1; e321 ¼ �1; e311 ¼ e322 ¼ 0), uj is the displacement,
uk;i ¼ ouk=oxi, ni is the direction cosine, Tk ¼ rkmnm denotes the force component, and W (¼ rijeij=2) the
strain energy function. Clearly, the integral LðKÞ is path independent.
The integral may be rewritten in the form

LðKÞ ¼
Z ðx;yÞ

ðx0;y0Þ;ðKÞ
½e3ijWxjni � e3ijð�dkiuj þ uk;ixjÞrkmnm	ds ð28Þ

where Kronecker deltas dij is defined as dij ¼ 1 for i ¼ j, dij ¼ 0 for i 6¼ j. In addition, we can define the
integral

LðCHÞ ¼
I
CH

½e3ijWxjni � e3ijð�dkiuj þ uk;ixjÞrkmnm	ds ð29Þ

where ‘‘CH’’ is a closed integration path indicated in Fig. 1. Eq. (29) reveals that the terms e3ijð�dkiujþ
uk;ixjÞ ðk ¼ 1; 2Þ may be a displacement of a real elastic solution, which is named b-field here. Therefore, we
can assume

uðbÞ ¼ �vþ y ou
ox

� x ou
oy

; vðbÞ ¼ uþ y ov
ox

� x ov
oy

ð30Þ

It is easy to verify that the displacements uðbÞ and vðbÞ satisfy the following governing equation for dis-
placements:
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ðj þ 1Þ o
2uðbÞ
ox2

þ ðj � 1Þ o
2uðbÞ
oy2

þ 2 o
2vðbÞ
oxoy

¼ 0; ðj þ 1Þ o
2vðbÞ
oy2

þ ðj � 1Þ o
2vðbÞ
ox2

þ 2 o
2uðbÞ
oxoy

¼ 0 ð31Þ

Alternatively speaking, the displacements uðbÞ and vðbÞ is an elasticity solution. Meantime, the relevant stress
components can be expressed as

rxðbÞ ¼ �2rxy þ y
orx
ox

� x orx
oy

; ryðbÞ ¼ 2rxy þ y
ory
ox

� x ory
oy

; rxyðbÞ ¼ rx � ry þ x
orx
ox

� y ory
oy

ð32Þ

On the other hand, we can prove that the relevant complex potentials for the b-field are as follows:

/ðbÞðzÞ ¼ �iðz/0ðzÞ � /ðzÞÞ ð33Þ

wðbÞðzÞ ¼ �iðzw0ðzÞ þ wðzÞÞ ð34Þ

In addition, we can prove that, if the complex potentials /ðbÞðzÞ and wðbÞðzÞ are expanded in the form of Eqs.
(9) and (10), the condition (11) is satisfied. Therefore, the mentioned b-stress field is a derivative stress field.
Alternatively, from Eq. (29), LðCHÞ may be written in the form

LðCHÞ ¼
I
CH

½e3ijWxjni � uiðbÞrijnj	ds ð35Þ

In addition, we can introduce an MWDI as follows:

QðCHÞ ¼ 1
2

I
CH

fuirijðbÞ � uiðbÞrijgnj ds ð36Þ

A relation between LðCHÞ and QðCHÞ has been found, and it reads
LðCHÞ ¼ QðCHÞ ð37Þ

In fact, from Eqs. (35) and (36) we can see that in order to prove Eq. (37) it is necessary to prove the

following equality:

2

I
CH

e3ijWxjni ds ¼
I
CH

fuirijðbÞ þ uiðbÞrijgnj ds ð38Þ

The equality (38) can be proved by considering the following points (Chen, 1985; Chen and Lee, 2002):

(a) The strain energy function can be expressed in an explicit form

W ¼ rijui;j=2 ð39Þ

(b) Since the equilibrium condition is satisfied, the following substitutions are used:

orx
ox

¼ � orxy
oy

;
orxy
ox

¼ � ory
oy

ð40Þ

(c) In the derivation it is assumed that the single-valuedness condition of displacements is satisfied.

Since the closed path ‘‘CR’’ is a particular type ‘‘CH’’, from Eq. (37) it follows (Fig. 1)

LðCRÞ ¼ QðCRÞ ð41Þ
where

LðCRÞ ¼
I
CR

fe3ijWxjni � uiðbÞrijnjgds ð42Þ
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QðCRÞ ¼ 1
2

I
CR

fuirijðbÞ � uiðbÞrijgnj ds ð43Þ

Note that the integral QðCRÞ is exactly the same kind of DðCRÞ, which was defined by Eq. (12).
Since the b-field is a derivative stress field, substituting Eqs. (4) and (5) into Eqs. (33) and (34) yields

/ðbÞðzÞ ¼ �iðz/0ðzÞ � /ðzÞÞ ¼ �i A1z

 "
þ A2 �

X1
k¼1

kak
zk

!
� A1z

 
þ A2 log zþ a0 þ

X1
k¼1

ak
zk

!#
ð44Þ

wðbÞðzÞ ¼ �iðzw0ðzÞ þ wðzÞÞ ¼ �i B1z

 "
þ B2 �

X1
k¼1

kbk
zk

!
þ B1z

 
þ B2 log zþ b0 þ

X1
k¼1

bk
zk

!#
ð45Þ

Comparing Eqs. (44) and (45) with Eqs. (9) and (10), it is found

E1 ¼ 0; E2 ¼ iA2; e0 ¼ �iðA2 � a0Þ; e1 ¼ ið2a1Þ ð46Þ

F1 ¼ �ið2B1Þ; F2 ¼ �iB2; f0 ¼ �iðB2 þ b0Þ; f1 ¼ 0 ð47Þ
The constants A1;A2; a0; a1; . . .B1;B2; b0; b1; . . . for the a-field were shown in Eqs. (4), (5), (7) and (8). The

constants E1;E2; e0; e1; . . . F1; F2; f0; f1; . . . for the b-field were shown in Eqs. (46) and (47). Substituting the
mentioned constants into Eq. (20) yields

LðCRÞ ¼ QðCRÞ ¼ pðj þ 1Þ
G

Im½A2b0 � a0B2 � 2a1B1	 ð48Þ

Some particular features can be found from Eq. (48): (a) the LðCRÞ value does not depend on A1 and b1,
(b) for evaluating the LðCRÞ, it is necessary to obtain the constants A2; a0; a1 and B1;B2; b0.
For a given stress state of the infinite plate, consider how the LðCRÞ-integral changes from one system of

rectangular coordinates to another. Let ðx; yÞ and ðx
; y
Þ be the coordinates of the same point in the ðxoyÞ
and ðx
o
y
Þ systems and let

z
 ¼ zþ zd ðwith z
 ¼ x
 þ iy
; z ¼ xþ iy; zd ¼ xd þ iydÞ ð49Þ
where zd represents a translation of the coordinate system (Fig. 2(a)).
The complex potentials in the new coordinates ðx
; y
Þ take the form (Muskhelishvili, 1953)

/
ðz
Þ ¼ /ðz
 � zdÞ; w
ðz
Þ ¼ wðz
 � zdÞ � �zzd/
0ðz
 � zdÞ ð50Þ

Infinite plate ∞σ ∞σ ∞σxyyx
∞σ ∞σ ∞σxyyxInfinite plate

α

y
y

*y
*y

dx o

x
dy

o

x

*o

(a) (b)

*x

*x

Fig. 2. Transformation of the coordinates: (a) translation of the coordinates, (b) rotation of the coordinates.
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The complex potentials in the ðx
o
y
Þ coordinates can be expressed in the following form:

/
ðz
Þ ¼ A1
z
 þ A2
 log z
 þ a0
 þ
X1
k¼1

ak

zk


ð51Þ

w
ðz
Þ ¼ B1
z
 þ B2
 log z
 þ b0
 þ
X1
k¼1

bk

zk


ð52Þ

After substituting Eqs. (4) and (5) into Eq. (50), it is easy to find the following results:

A1
 ¼ A1; A2
 ¼ A2; a0
 ¼ a0 � A1zd ; a1
 ¼ a1 � A2zd ð53Þ

B1
 ¼ B1; B2
 ¼ B2; b0
 ¼ b0 � B1zd � A1�zzd ; b1
 ¼ b1 � B2zd � A2�zzd ð54Þ
In the ðx
o
y
Þ coordinates, the L
ðCRÞ can be expressed in the form

L
ðCRÞ ¼
pðj þ 1Þ

G
Im½A2
b0
 � a0
B2
 � 2a1
B1
	 ð55Þ

Substituting Eqs. (53) and (54) into Eq. (55) yields

L
ðCRÞ ¼ LðCRÞ þ La ð56Þ
where

La ¼ ydJ1ðCRÞ � xdJ2ðCRÞ ðzd ¼ xd þ iydÞ ð57Þ

J1ðCRÞ ¼
I
CR

Wn1

�
� oui

ox
rijnj



ds ¼ pðj þ 1Þ

G
Re½A1A2 þ A1B2 þ A2B1	 ð58Þ

J2ðCRÞ ¼
I
CR

Wn2

�
� oui

oy
rijnj



ds ¼ pðj þ 1Þ

G
Im½A1A2 � A1B2 � A2B1	 ð59Þ

In Eqs. (57)–(59), the J1 and J2 are well known in the literature (Chen and Lee, 2002). Eq. (55) reveals that
the LðCRÞ is not an invariant with respect to the translation of coordinates.
Secondly, consider how the L-integral changes under a rotational transformation of the rectangular

coordinates (Fig. 2(b)). Let ðx; yÞ and ðx
; y
Þ be the coordinates of the same point in the ðxoyÞ and ðx
oy
Þ
systems and let

z
 ¼ z expðiaÞ ðwith z
 ¼ x
 þ iy
; z ¼ xþ iyÞ ð60Þ
where the angle a represents a rotation of the coordinate system (Fig. 2(b)).
The complex potentials in the new coordinates ðx
; y
Þ take the form (Muskhelishvili, 1953)

/
ðz
Þ ¼ expðiaÞ/½expð�iaÞz
	; w
ðz
Þ ¼ expð�iaÞw½expð�iaÞz
	 ð61Þ
Similarly, the complex potentials can be expressed in the following forms:

/
ðz
Þ ¼ A1
z
 þ A2
 log z
 þ a0
 þ
X1
k¼1

ak

zk


ð62Þ

w
ðz
Þ ¼ B1
z
 þ B2
 log z
 þ b0
 þ
X1
k¼1

bk

zk


ð63Þ

After substituting Eqs. (4) and (5) into Eq. (61), it is easy to find the following results:

A1
 ¼ A1; A2
 ¼ expðiaÞA2; a0
 ¼ expðiaÞ½�iaA2 þ a0	; a1
 ¼ expð2iaÞa1 ð64Þ
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B1
 ¼ expð�2iaÞB1; B2
 ¼ expð�iaÞB2; b0
 ¼ expð�iaÞ½�iaB2 þ b0	; b1
 ¼ b1 ð65Þ

Similarly, in the ðx
o
y
Þ coordinates the L
ðCRÞ can be expressed in the form

L
ðCRÞ ¼
pðj þ 1Þ

G
Im½A2
b0
 � a0
B2
 � 2a1
B1
	 ð66Þ

Substituting Eqs. (64) and (65) into Eq. (66) yields

L
ðCRÞ ¼ LðCRÞ; ð67Þ

Eq. (67) reveals that the LðCRÞ is an invariant with respect to the rotation of coordinates.
Three particular cases for evaluating the L-integral are introduced below.
(1) In the first case, the loading condition is shown by Fig. 3(a) where the concentrated forces Px and Py

are applied on the crack face, the available solution is as follows (Chen, 1995):

/0ðzÞ
x0ðzÞ ¼ Px þ iPy

2p
j � 1
j þ 1

1

X ðzÞ

�
� 1

z� s



ð68Þ

w0ðzÞ ¼ �xx0ðzÞ � z/00ðzÞ � /0ðzÞ ð69Þ

where

X ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
ðtaking the branch Limz!1X ðzÞ=z ¼ 1Þ ð70Þ

After comparing Eqs. (68) and (69) with Eqs. (4) and (5), we will find

A1 ¼ 0; A2 ¼ � Px þ iPy
pðj þ 1Þ ; a1 ¼

ðPx þ iPyÞs
2p

ð71Þ

B1 ¼ 0; B2 ¼
jðPx � iPyÞ
pðj þ 1Þ ; b1 ¼

ð2iPyÞs
2p

ð72Þ

Using Eqs. (48), (71) and (72) yields

LðCRÞ ¼ � 1
G
Im½ðja0 � �bb0ÞðPx � iPyÞ	 ð73Þ

It is known that for a given stress state, two constants a0; b0 in Eqs. (4) and (5) cannot be determined from
the force boundary condition. That is to say in the present case the LðCRÞ value may be influenced by the
rigid motion of body, which is determined by a0 and b0.

y y

∞

∞

∞

σ

σ
σ

xy

y

x
∞∞∞ σσσ xyyx

y

yP

x
P

o

o
o

xx x a
b

2a 2a

(a) (b) (c)

s

Fig. 3. Three loading cases: (a) a crack with forces on the crack face, (b) a crack with remote loading, (c) an elliptic hole in an infinite

plate.
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(2) In the second case, the loading condition is shown by Fig. 3(b) where the remote tractions r1
x , r

1
y and

r1
xy are applied, the available solution is as follows:

/0ðzÞ ¼ 1
4
ðr1

x þ r1
y Þ �

1

2
ðr1

y � ir1
xy Þ 1
�

� z
X ðzÞ

�
ð74Þ

w0ðzÞ ¼ 1
2
ðr1

y � r1
x þ 2ir1

xy Þ � ir1
xy 1

�
� z
X ðzÞ

�
þ 1
2
ðr1

y � ir1
xy Þ

a2z
X 3ðzÞ ð75Þ

After comparing Eqs. (74) and (75) with Eqs. (4) and (5), we will find

A1 ¼
r1
x þ r1

y

4
; A2 ¼ 0; a1 ¼ � 1

4
ðr1

y � ir1
xy Þa2 ð76Þ

B1 ¼
1

2
ðr1

y � r1
x þ 2ir1

xy Þ; B2 ¼ 0; b1 ¼ � 1
2

r1
y a

2 ð77Þ

Using Eqs. (48), (76) and (77) yields (Herrmann and Herrmann, 1981)

LðCRÞ ¼ pðj þ 1Þ
4G

r1
xy ðr1

x þ r1
y Þa2 ð78Þ

or

LðCRÞ ¼ j þ 1
4G

K2ðK1 þ r1
x

ffiffiffiffiffiffi
pa

p
Þa ð79Þ

where K1 and K2 are the stress intensity factor at the crack tip.
(3) In the third example, it is assumed that an infinite plate containing an elliptical notch is applied by

the remote tractions r1
x , r

1
y and r1

xy and that the notch surface is traction free (Fig. 3(c)). In the case, the

previously introduced complex potentials /ðzÞ and wðzÞ are rewritten as /1ðzÞ and w1ðzÞ. Meantime, the
following mapping function is introduced:

z ¼ xð1Þ ¼ R0 1

�
þ m

1

�
ð06m6 1Þ ð80Þ

which maps the region outside the unit circle (in 1-plane) into a region outside the elliptical notch (in
z-plane). Clearly, there are the following relations:

a ¼ R0ð1þ mÞ; b ¼ R0ð1� mÞ; R0 ¼ ðaþ bÞ=2; m ¼ ða� bÞ=ðaþ bÞ ð81Þ
where ‘‘a’’ and ‘‘b’’ are the major and minor axes of the elliptical notch, respectively (Fig. 3(c)). In 1-plane
two complex potentials are defined

/ð1Þ ¼ /1ðzÞ z¼xð1Þ

��� ; wð1Þ ¼ w1ðzÞ z¼xð1Þ

��� ð82Þ

The traction free condition of the elliptical contour leads to

/ð1Þ þ xð1Þ/0ð1Þ
x0ð1Þ

þ wð1Þ ¼ 0 ðon unit circle j1j ¼ 1Þ ð83Þ

After some manipulation, the boundary value problem has the following solution (Muskhelishvili, 1953):

/ð1Þ ¼ A1R01 � ðmA1 þ B1ÞR0
1

1
ð84Þ
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wð1Þ ¼ B1R01 � A1R0
1

1
� ð1þ m2ÞA1R0

1
12 � m� ðmA1 þ B1ÞR0

m12 þ 1
1ð12 � mÞ ð85Þ

where

A1 ¼
r1
x þ r1

y

4
; B1 ¼

r1
y � r1

x

2
þ ir1

xy ð86Þ

From Eq. (80), at the remote place we have

1 � z
R0

� mR0
z

;
1

1
� R0
z

ð87Þ

Substituting Eq. (87) into Eqs. (84) and (85) yields

/1ðzÞ ¼ /ð1Þ1¼x�1ðzÞ ¼ A1zþ A2 log zþ
a1
z
þ � � � ð88Þ

w1ðzÞ ¼ wð1Þ1¼x�1ðzÞ ¼ B1zþ B2 log zþ
b1
z
þ � � � ð89Þ

where

A2 ¼ B2 ¼ 0; a1 ¼ �R20ð2mA1 þ B1Þ; b1 ¼ �R20½2ð1þ m2ÞA1 þ mB1 þ mB1	 ð90Þ

Substituting Eqs. (86) and (90) into Eq. (48) yields

LðCRÞ ¼ pðj þ 1Þ
G

mR20r
1
xy ðr1

x þ r1
y Þ ð91Þ

5. Conclusions

The derivative stress field plays an important role in the present study. It is found that, for the cases of

J1-, J2-, L-, and M-integral, the relevant derivative stress fields can be found from this study and previous
papers (Chen, 1985; Chen and Lee, 2002). If the complex potentials are expressed in the form of Eqs. (4)

and (5), the final results are as follows:

J1ðCRÞ ¼
I
CR

Wn1

�
� oui

ox
rijnj



ds ¼ pðj þ 1Þ

G
Re½A1A2 þ A1B2 þ A2B1	 ð92Þ

J2ðCRÞ ¼
I
CR

Wn2

�
� oui

oy
rijnj



ds ¼ pðj þ 1Þ

G
Im½A1A2 � A1B2 � A2B1	 ð93Þ

LðCRÞ ¼
I
CR

½e3ijWxjni � e3ijð�dkiuj þ uk;ixjÞrkmnm	ds ¼
pðj þ 1Þ

G
Im½A2b0 � a0B2 � 2a1B1	 ð94Þ

MðCRÞ ¼
I
CR

ðWxini � ui;kxkrijnjÞds ¼
pðj þ 1Þ
G

Re½�A1b1 � a1B1 þ A2B2	 ð95Þ

Previously, researchers were unaware of the vanishing condition for the mentioned path independent
integrals. For the J1ðCRÞ- and J2ðCRÞ-integrals, two sufficient conditions for the vanishing value of the
integrals are as follows: (a) A1 ¼ B1 ¼ 0 (or r1

x ¼ r1
y ¼ r1

xy ¼ 0) or (b) A2 ¼ B2 ¼ 0 (or Fx ¼ Fy ¼ 0).
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Meantime, for the LðCRÞ-integral, a sufficient condition for the vanishing value of the integral is as
follows: B1 ¼ 0 (or r1

y � r1
x þ 2ir1

xy ¼ 0) and A2 ¼ B2 ¼ 0 (or Fx ¼ Fy ¼ 0). Finally, for the MðCRÞ-inte-
gral, a sufficient condition for the vanishing value of the integral is as follows: (a) A1 ¼ B1 ¼ 0 (or
r1
x ¼ r1

y ¼ r1
xy ¼ 0) and (b) A2 ¼ B2 ¼ 0 (or Fx ¼ Fy ¼ 0). From the above-mentioned analysis we see that

the vanishing conditions for these integrals are quite different.

Obviously, it is straightforward to obtain the path independent integrals (J1ðCRÞ-, J2ðCRÞ-, LðCRÞ- and
MðCRÞ-integrals) from the general results shown by Eqs. (92)–(95). However, it is not easy to get the

physical explanation for those integrals in more general case, particularly in the case of A2 6¼ 0 and B2 6¼ 0,
i.e. there are some resultant forces applied on the finite portion of infinite plate.

These integrals can be evaluated for a simple crack with the conditions: (a) there is no resultant forces

applied on the crack, i.e. A2 ¼ B2 ¼ 0, (b) the remote tractions are r1
x , r

1
y and r1

xy . In this case, simply using

Eqs. (7), (8), (76), (77) and (92)–(95) yields

J1ðCRÞ ¼
I
CR

Wn1

�
� oui

ox
rijnj



ds ¼ 0 ð96Þ

J2ðCRÞ ¼
I
CR

Wn2

�
� oui

oy
rijnj



ds ¼ 0 ð97Þ

LðCRÞ ¼
I
CR

½e3ijWxjni � e3ijð�dkiuj þ uk;ixjÞrkmnm	ds ¼
pðj þ 1Þ
4G

r1
xy ðr1

x þ r1
y Þa2 ð98Þ

MðCRÞ ¼
I
CR

ðWxini � ui;kxkrijnjÞds ¼
pðj þ 1Þ
4G

½ðr1
y Þ

2 þ ðr1
xy Þ

2	a2 ð99Þ

Clearly,MðCRÞ can serve as a measure of severity at the crack tip. If the values of r1
y and r1

xy are higher,

the crack tip is more dangerous. However, one cannot see the role of the component r1
x in the expression of

MðCRÞ. On the other hand, the LðCRÞ may be another measure of severity at the crack tip, in which all the
components r1

x , r
1
y and r1

xy are involved. However, unlike the MðCRÞ case, one cannot judge whether the
LðCRÞ is definitely positive or negative.
It is known that the MðCRÞ is an additional strain energy stored in a cracked body. Therefore, it is

interesting to investigate the MðCRÞ variation with respect to a neighboring configuration of the crack
(Fig. 4).

In the first case, we assume that the crack length ‘‘2a’’ get an extension and becomes 2að1þ aÞ (Fig. 4(b)).
In this case, the relevant MðCRÞ is denoted by

MðaÞ ¼ pðj þ 1Þ
4G

½ðr1
y Þ

2 þ ðr1
xy Þ

2	ð1þ aÞ2a2 ð100Þ

y
y y

o o ox x x

2a

(a) (b) (c)

2a
a)1(2 α

β

+

Fig. 4. A single crack with remote tractions r1
x , r

1
y and r1

xy : (a) the original case, (b) a crack with extension, (c) a crack with rotation.
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Clearly, from Eq. (100) we have

oMðaÞ
oa

����
a¼0

¼ 2MðCRÞ ð101Þ

That is to say, the value of MðCRÞ represents the energy variation with respect to the crack extension.
In the second case, we assume that the crack get a rotation with a rotating angle ‘‘b’’ (Fig. 4(c)). In this

case, the relevant MðCRÞ is denoted by

MðbÞ ¼ pðj þ 1Þ
4G

½ðr1
y
Þ

2 þ ðr1
xy
Þ

2	a2 ð102Þ

where

r1
y
 ¼ r1

x sin
2 b þ r1

y cos
2 b � 2r1

xy sin b cos b

r1
xy
 ¼ ð�r1

x þ r1
y Þ sin b cos b þ r1

xy ðcos2 b � sin2 bÞ
ð103Þ

Clearly, from Eq. (102) we have

oMðbÞ
ob

����
b¼0

¼ �2LðCRÞ ð104Þ

That is to say, the value of LðCRÞ represents the energy variation with respect to the crack rotation. Similar
derivation can be found from Herrmann and Herrmann (1981).

Clearly, two equations (101) and (104) are similar. However, the former case shown by Fig. 4(b) can be

realized physically. For example, in the case of r1
y 6¼ 0 and r1

xy ¼ 0, the crack may have extension in
x-direction. However, the case of crack rotation does not exist physically (Fig. 4(c)).
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